Solving the Shortest Lattice Vector Problem in Time 22.465n

نویسندگان

  • Xavier Pujol
  • Damien Stehlé
چکیده

The Shortest lattice Vector Problem is central in lattice-based cryptography, as well as in many areas of computational mathematics and computer science, such as computational number theory and combinatorial optimisation. We present an algorithm for solving it in time 2 and space 2, where n is the lattice dimension. This improves the best previously known algorithm, by Micciancio and Voulgaris [SODA 2010], which runs in time 2 and space 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding shortest lattice vectors faster using quantum search

By applying a quantum search algorithm to various heuristic and provable sieve algorithms from the literature, we obtain improved asymptotic quantum results for solving the shortest vector problem on lattices. With quantum computers we can provably find a shortest vector in time 21.799n+o(n), improving upon the classical time complexities of 22.465n+o(n) of Pujol and Stehlé and the 22n+o(n) of ...

متن کامل

Solving the Shortest Lattice Vector Problem in Time 2

The Shortest lattice Vector Problem is central in lattice-based cryptography, as well as in many areas of computational mathematics and computer science, such as computational number theory and combinatorial optimisation. We present an algorithm for solving it in time 2 and space 2, where n is the lattice dimension. This improves the best previously known algorithm, by Micciancio and Voulgaris ...

متن کامل

Space-efficient classical and quantum algorithms for the shortest vector problem

A lattice is the integer span of some linearly independent vectors. Lattice problems have many significant applications in coding theory and cryptographic systems for their conjectured hardness. The Shortest Vector Problem (SVP), which is to find the shortest non-zero vector in a lattice, is one of the well-known problems that are believed to be hard to solve, even with a quantum computer. In t...

متن کامل

Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

By applying Grover’s quantum search algorithm to the lattice algorithms of Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and Stehlé, we obtain improved asymptotic quantum results for solving the shortest vector problem. With quantum computers we can provably find a shortest vector in time 2, improving upon the classical time complexity of 2 of Pujol and Stehlé and the 2 of...

متن کامل

Sieving for Shortest Vectors in Ideal Lattices

Lattice based cryptography is gaining more and more importance in the cryptographic community. It is a common approach to use a special class of lattices, so-called ideal lattices, as the basis of lattice based crypto systems. This speeds up computations and saves storage space for cryptographic keys. The most important underlying hard problem is the shortest vector problem. So far there is no ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009